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Abstract. We obtain an alternative combinatorial description of Igusa’s cubical cat-
egories of noncrossing partitions, using various classes of trees. We also count the
morphisms in these categories, according to the ranks of the source and target objects.

Résumé. Nous obtenons une description combinatoire alternative des catégories cu-
biques de partitions non-croisées d’Igusa, en utilisant diverses classes d’arbres. Nous
comptons aussi le nombre de morphismes dans ces catégories selon les rangs des objets
source et cible.
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Introduction

Kiyoshi Igusa has introduced in [4] interesting category of noncrossing partitions NPn,
one for each n ≥ 1. The objects of the category NPn are noncrossing partitions of the set
{1, 2, . . . , n} and morphisms are defined using forests of binary trees. This construction
was motivated by the general theory of pictures and picture groups, that can be associ-
ated to quivers of finite type. The category of noncrossing partitions is closely related to
the special case of the equi-oriented quiver of type An.

This article started with the idea of counting the morphisms in this category. It turns
out that there is a nice answer. For our convenience, we will let NPn be the opposite
category of the category introduced by Igusa.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 1: A noncrossing partition of {1, . . . , 22} in 10 blocks

A partition π = {π1, . . . , πk} of a linearly ordered set is called noncrossing if given
any two blocks πi 6= πj of π, there does not exist a, b in πi and c, d in πj such that
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a < c < b < d. We let NCn be the set of noncrossing partitions of {1, · · · , n}, and
we represent them by a diagram with the numbers 1, 2, . . . , n from left to right on an
horizontal line, as in Figure 1.

Let the rank rk(π) of a noncrossing partition π be n minus the number of blocks of π.
The bottom noncrossing partition {1}, {2}, . . . , {n} has rank 0 and the top noncrossing
partition {1, 2, . . . , n} has rank n − 1. Then morphisms in NPn can only increase the
rank. Every morphism is a composition of morphisms increasing the rank by 1. This
category is therefore graded by the rank.

The total number of morphisms in NPn is given for small n ≥ 1 by

1, 4, 21, 126, 818, 5594, 39693, 289510, . . .

which is the sequence A3168 in the OEIS encyclopedia. These numbers count dissections
of polygons into even regions, and are also the number of sylvester classes of 2-packed
words, see eq. (184) in [7].

To refine this enumeration, one can count morphisms according to the difference of
ranks between their source and their target. The numbers for n = 1, . . . , 5 are:

(1), (2, 2), (5, 11, 5), (14, 49, 49, 14), (42, 204, 326, 204, 42). (0.1)

Note the symmetry of these numbers, which is not obviously induced by a symmetry of
the category.

These numbers are related to the fact that the category NPn is a cubical category, as
explained in [4]. This implies that one can describe a classifying space for NPn which is
a cubical complex, in which the number of k-cubes is exactly the number of morphisms
in NPn increasing the rank by k. The symmetry observed in (0.1) may have a topological
explanation by mean of this cubical complex, but this is not clear to us.

To refine even further the enumeration, one can count all morphisms whose source
and target have fixed ranks. This gives triangles of numbers, the first few ones being

(
1
)

,
(

2 1
1

)
,

 5 5 1
6 3
1

 ,


14 21 9 1
28 28 6
12 6
1

 .

Let `i,j be the number of morphisms from rank i to rank j.

Theorem 1. Let n, i, j satisfy 0 ≤ i ≤ j ≤ n− 1. Then

`i,j =
1
n

(
n
i

)(
n

j + 1

)(
2n− i
j− i

)
. (0.2)

http://oeis.org/A003168
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It follows that the three border layers of these triangles of numbers are given by
the Narayana numbers (seq. A1263) for the diagonal, by sequence A108767 for the left
column and by sequence A33282 (counting dissections of a regular polygon according
to the number of regions, see [2]) for the top row.

Let now Ln(u, v), ∆n(u, v) be the generating polynomials

Ln(u, v) = ∑
0≤i≤j≤n−1

`i,juivj and ∆n(u, v) = Ln(u− 1, v).

This change of variables allows to exhibit in ∆n a hidden ternary symmetry of Ln. We
will prove in Section 2.3 that ∆n is a generating polynomial for ternary rooted trees with
parameters their numbers of left and right edges (In particular, the values ∆n(1, 1) form
the sequence A1764). This implies immediately that ∆n has the following symmetries:

∆n(u, v) = (uv)n−1∆n(1/v, 1/u),

∆n(u, v) = vn−1∆n(uv, 1/v).

It follows that
un−1Ln(v, 1/u) = Ln((v + 1− u)/u, u).

By letting v = u = x, one gets that

xn−1Ln(x, 1/x) = Ln(1/x, x)

which is the symmetry observed in (0.1).

A remark can be made about the Euler characteristic of the categories NPn. This is
just χ(NPn) = (−1)n−1Ln(−1,−1) because of the known description of the classifying
space as a cubical complex. It turns out to give the aerated Catalan numbers:

1, 0,−1, 0, 2, 0,−5, 0, 14, 0,−42, 0, 132, 0,−429, 0, 1430, . . . (0.3)

The full homology of the classifying space of NPn has been computed in terms of ballot
numbers in [5].

The paper is organized as follows: in the first section, we obtain an alternative, and
somewhat simpler, description of the categoriesNPn. This is based on the combinatorics
of Schröder trees, with an intermediate step using a description of noncrossing partitions
by bicolored trees. The second and last section uses this description and a method from
free probability to obtain the enumerative results explained above.

Formula (0.2) was found during the first author’s stay in Seoul in December 2014.
F. Chapoton has benefited from the support of the project Carma of the French ANR
(ANR-12-BS01-0017).

http://oeis.org/A1263
http://oeis.org/A108767
http://oeis.org/A33282
http://oeis.org/A1764
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1 A combinatorial model of the category

Let us sketch an overview of Igusa’s construction, see [4]; to compare with his nota-
tions we stress that we use the opposite category. The objects of the category NPn are
noncrossing partitions of size n. Then one attaches a set of edges E(π) to every π, and
more generally a relative edge set E(π, µ) if π refines µ. Morphisms are then defined as
certain subsets of E(π, µ), and their composition uses a certain notion of compatibility
of edges. Igusa proceeds to prove that one thus obtains a cubical category with properties
ensuring that its classifying space BNP(n) is a K(π, 1) space. Then the fundamental
group of BNP(n) is computed and seen to be equal to the picture group G(An−1).

The construction of the category NPn uses heavily the language of vector spaces and
linear maps. In this section we reformulate it using the language of trees, which gives a
pleasant description of morphism composition in particular.

1.1 Objects

Let BICn be the set of plane rooted trees with n edges, canonically endowed with a
bipartite black and white coloring in which the root is white. Our starting point is to
encode π ∈ NCn with a tree t(π) ∈ BICn as follows. Black vertices of t(π) correspond to
blocks of π, while white vertices are associated to consecutive entries of a block, and an
extra one. Black to white edges go from a block to its consecutive entries, while white to
black edges go to the maximal blocks between the consecutive entries. The extra white
vertex on top is the root, and has edges to the maximal blocks.

This can be conveniently depicted when the noncrossing partition is drawn as in
Figures 1 and 2. Namely, one can put a black vertex at the middle of the unique top arch
of every block, and a white vertex at the middle of every bottom arch of every block.
The additional white vertex can be put above all the other vertices.

Proposition 2 ([3, Theorem 2.1]). The correspondence π → t(π) is a bijection from NCn to
BICn such that the number of blocks of π is equal to the number of black vertices of t(π).

Note that the result in [3] is stated in terms of permutations. To connect it with our
formulation, recall that noncrossing partitions can be identified with minimal factoriza-
tions of the cyclic permutation (1, 2, . . . , n) as a product of two permutations (see [1]).

To recover the noncrossing partition π from the tree t(π), perform a counterclockwise
tour of the tree, starting at the root. During this tour, every edge will be covered exactly
once in each direction. Label the “white to black” edges by 1, 2, . . . , n in the order in
which they are traversed during the tour. Then the labels around a black vertex form a
block of the noncrossing partition π.

Let us give the correspondence between our setting and some notations of [4, §1]. A
parallel set of π corresponds to a subset of blocks which are children of a given white
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 2: Correspondence: noncrossing partition and bicolored plane tree

vertex in t(π). The edge set E(π) corresponds to all pairs of black vertices of t(π) which
are adjacent to the same white vertex

1.2 Morphisms

Let π, µ ∈ NCn. There exists a morphism from π to µ if and only if π is a refinement of µ:
this means that every block of π is contained in a block of µ, and write this as π � µ.

Assume π � µ, and let (µ1, . . . , µk) be the blocks of µ. Let π j be the noncrossing
partition induced by π on the block µj, which can be naturally considered as a single
block partition. A morphism from π to µ is defined as a collection of morphisms from π j

to µj for j = 1, . . . , k.
In words, a general morphism from π to µ can be recovered from morphisms be-

tween smaller noncrossing partitions with target a noncrossing partition with one block,
together with µ serving as a pasting scheme. This will allow us to use methods of free
probability to count all morphisms, starting from the knowledge of morphisms to single
block partitions, see Section 2.2.

It is thus enough to define morphisms to the top partition {1, 2, . . . , n}, which we will
call morphisms to the top for short. A binary tree B is a rooted planar binary tree, defined
recursively as either empty or a root vertex and a pair (left subtree, right subtree). Its size
is its number of vertices. In bicolored plane trees, we let d(w) be the number of children
of a vertex w. The following definition is illustrated in Figure 3, left.

Definition 3 ([4]). A morphism from π to the top is a collection of binary trees (Bw)w
indexed by the white vertices w ∈ t(π), where Bw has size d(w) .

Remark 4. An important remark is that the vertices of Bw are naturally indexed by the
blocks of π corresponding to the d(w) children of w. For this, perform an infix traversal
of Bw, by recursively running through its vertices Bw in the order: left subtree, then root,
then right subtree, and labeling the vertices with blocks along the way. In this manner
one sees that Definition 3 is the same as Igusa’s.
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Example 5. There is a single morphism from {1, . . . , n} to itself (which must therefore be
the identity). By the definition of a general morphism, there is also a single morphism
from π to π for any π ∈ NCn. Since morphisms only go from a partition to a coarser one,
it follows that there are |NCn| morphisms with the same starting and ending ranks.

Now consider the bottom partition πb = {{1}, {2}, . . . , {n}}. The tree t(πb) is a
single white vertex with n children, so morphisms from πb to the top are binary trees
with n vertices. These are counted by Catalan numbers, which also enumerates NCn. This
shows that in each of the rows of (0.1) the leftmost and rightmost numbers are equal to
the same Catalan number. A more general symmetry will be proved in Section 2.3.

We will now explain how to encode these morphisms by Schröder trees, i.e. plane
rooted trees with no vertex of degree 1. So vertices are either leaves or inner vertices of
degree at least 2. To each inner vertex of out-degree d are attached d− 1 angular sectors
formed by consecutive outgoing edges. Note that if a Schröder tree has n angular sectors
then it has n + 1 leaves.

Let π ∈ NCn and t(π) ∈ BICn its bicolored tree. Fix a morphism f from π to the top,
which by definition is a binary tree Bw of size d(w) for each white vertex w ∈ t(π).

Let us give a recursive construction of the Schröder tree S( f ), illustrated by Figure 3.
First consider the binary tree Br corresponding to the root r of t(π). As explained after
Definition 3, the vertices of Br correspond to black vertices bi of t(π) of outdegrees di.
Add outgoing edges to each bi in Br so that its outdegree becomes di + 2, where the
possible left or right edges present in Br must remain on the left or right. This results in
a tree B′r, see Figure 3.

Now each vertex bi has plane trees tj
i ∈ BIC attached to it in t(π) with j = 1, . . . , di.

By restriction each comes equipped with some of the binary trees Bw and thus deter-
mines a morphism. By induction, we know how to associate with each such morphism
a Schröder tree Sj

i . We then graft this tree at the end of jth inner edge of the vertex bi in
B′r, respecting the left-to-right ordering to get the desire S( f ).

Proposition 6. The correspondence f → S( f ) is a bijection between morphisms from any ele-
ment π of NCn to {1, . . . , n}, and Schröder trees with n angular sectors. Inner vertices of S( f )
are in bijection with blocks of π, and an inner vertex has degree d + 1 if the corresponding block
has size d.

Proof. By construction, the tree S( f ) is a Schröder tree with n angular sectors, so the
correspondence is well-defined. We give the inverse bijection, and leave the easy details
to the reader. Given S a Schröder tree with n angular sectors, let us construct π ∈ NCn
and a morphism f from π to the top. First, perform a tour of the tree S, and label the
angular sectors encountered on the way by 1 to n. The blocks of π are then read off
under the inner vertices. Now in S only consider edges between inner vertices which
are either the leftmost or rightmost ones. The connected components of the induced
subgraph are binary trees which determine the morphism f .
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Figure 3: A morphism f = (π, (Bw)w) and the associated Schröder tree S( f ). All
labelings are canonical and deduced from specific traversals of the trees.

By the previous proposition and the description of morphisms in general, a mor-
phism with target µ will be encoded with a collection S(g) = (S(g)µi)i indexed by
the blocks of µ. For instance the morphism f in the middle of Figure 4 has target
{{1,7,8,9},{2,3},{4,5},{6},{10,11,12}}.

There is a direct way to connect the tree S( f ) to what Igusa calls the “rooted tree
[T] generated by a morphism”. Indeed [T] is the tree formed by the inner edges of S( f )
(that is to say, the edges between inner vertices), where inner vertices are labeled by their
associated blocks. Equivalently, it is obtained by pruning all leaves of S( f ).

1.3 Composition of morphisms

Suppose that one has a morphism f from π to µ and then g from µ to the top. By
Proposition 6, g corresponds to a Schröder tree S(g) where the vertices bµi are indexed
by the blocks µi of µ, while f corresponds to a collection of Schröder trees S( f )µi , one
for each block of µ. Then the composition g ◦ f is determined as follows: in the Schröder
tree of g, replace each vertex bµi by the Schröder tree S f (µi). The resulting Schröder tree
is a Schröder tree S(h) and one defines g ◦ f := h.

For the general case when the target of g is a noncrossing partition ν, one simply
extends the definition by applying the same rule on every block of ν.

This composition of morphisms is closely related to an operad structure on Schröder
trees, defined similarly using substitution around vertices. This differs from the free
operad structure used in [6] in terms of grafting on leaves.

Let us just say a few words (not going into details) on how to identify this simple
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Figure 4: Composition of morphisms as a substitution in trees.

composition with the original, convoluted description of the composition in the category
NPn in [4]. There the composition of morphisms is defined using a notion of compat-
ibility on the relative edge sets E(π, µ), and morphisms are identified with maximal
compatible subsets of edges.

Then the composition g ◦ f is given as the disjoint union of the edges of g and the
image of the edges of f by a natural isomorphism. With some care, this can be seen
to coincide with our substitution procedure, where the inner edges of S(g ◦ f ) either
come from the original inner edges of S(g) or from inner edges of f . We now give two
applications of our pictorial description of NPn:

Composition is associative. As already mentioned, the definition of morphisms in [4]
is quite involved and in fact requires two technical lemmas proved in their own section
([4, §2]). From there, Igusa can show that his composition is associative.

Without giving a formal proof, note that associativity is clear from our description.
Keeping the notations f , g of Section 1.3, suppose we are given a third morphism e with
target π, i.e. given by Schröder trees indexed by the blocks of π (which also index
vertices of S( f )). Then associativity is equivalent to the fact that, if one substitutes first
S( f ) in S(g), and then S(e) in the tree S(g ◦ f ), the result is the same as substituting S(e)
in S( f ) and then S( f ◦ e) in the tree S(g). This is a rather clear property of any kind of
substitution in general.

NPn is a cubical category. The pictorial description of morphisms and their composi-
tion also sheds light on the results of [4, §3]. Given a morphism f : π → µ in NPn,
the category Fac( f ) has as objects all triples (ξ, g, h) where g : π → ξ, h : ξ → µ and
f = h ◦ g, and a morphism from (ξ, g, h) to (ξ ′, g′, h′) is a morphism φ : ξ → ξ ′ such that
g′ = φ ◦ g and h′ ◦ φ = h.

We claim that Fac( f ) can be constructed as follows: Assume that f is a morphism to
the top of rank k, so that S( f ) is a tree with k + 1 inner vertices. Pick any subset E of
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the k inner edges of S( f ). From E a triple (ξE, gE, hE) of Fac( f ) can be constructed as
follows: first S(hE) is obtained from S( f ) by contracting all edges in E, and this naturally
determines ξE. Now, for each inner edge not in E, cut it so as to detach the lower vertex.
In this manner S( f ) is cut into connected components which are naturally indexed by
the blocks of ξE, and this determines the morphism gE.

By the substitutive definition of composition, this procedure produces all objects of Fac( f ).
Also one has a morphism from (ξE, gE, hE) to (ξF, gF, hF) if and only if E ⊆ F, and this
morphism is then unique. These results extend automatically to the case where f is a
general morphism.

It is then fairly easy to see that NPn is a cubical category in the sense of [4, Definition
3.2]. We mention only points (2) and (3) in this definition, the others being immediate.
Point (2) states that Fac( f ) is isomorphic to the poset category of {1, · · · , k} ordered by
inclusion, while point (3) demands that the forgetful functor (ξ, g, h) 7→ ξ from Fac( f )
to NPn be an embedding. Both of these facts follow directly from the combinatorial
description of Fac( f ).

2 Enumerative aspects

2.1 Generating series for morphisms to the top

Let us proceed to find generating series for the number of morphisms to the noncrossing
partition with one block. We will use the Schröder tree model for such morphisms, and
we refer to Remark 7 for a proof based directly on Igusa’s definition.

For this, one will use two parameters z and u. The power of the parameter z records
the number of angular sectors in the tree, which is just n. The power of the parameter u
is the number of inner vertices in the tree, which is the number i of blocks in the source
noncrossing partition π.

Let Q be the class of nonempty Schröder trees counted according to their number of
angular sectors. Q admits the recursive description

Q = u(1 +Q)List≥1 (Z(1 +Q)) , (2.1)

where Z is the atom corresponding to an angular sector.
Let Q = Q(z, u) be the generating function of the class Q. One therefore has the

functional equation

Q =
uz(1 + Q)2

1− z(1 + Q)
. (2.2)

By an algebraic manipulation, this is equivalent to the simpler equation

Q = z(1 + Q)(u + (1 + u)Q). (2.3)
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Remark 7. Let us sketch another proof of (2.3) that does not use Schröder trees. Let
Fw (respectively Fb) be the class of bicolored plane trees rooted at a white (respectively
black) vertex, enriched with a binary tree of size d(w) for any white vertex. Note that Fw
is in fact the generating function for morphisms to the top by Definition 3. We consider
the associated generating functions Fw, Fb where z counts the number of edges and u the
number of black vertices.

By decomposing at the root, one has the relations Fb =
u

1−zFw
and Fw = C(zFb). where

C(x) is the generating function for binary trees according to the number of vertices. Now
C satisfies C = 1/(1− xC) so we get Fw = 1

1−zFbFw
. Solving for Fw gives the equation

Fw = 1 + zFw(uFw + Fw − 1), and so Fw − 1 satisfies exactly the relation (2.3).

2.2 Free probability computations

Recall the following transform, occurring in free probability under the name of R-
transform, see for example [8]. We let Rn, Mn for n ≥ 1 be two sequences (with values in
a given ring) related by the following relations for n ≥ 1:

Mn = ∑
π∈NCn

Rπ, (2.4)

where Rπ is the product of Rk for k running over the block sizes of π. Then the two
generating functions

R(z) = 1 + ∑
n≥1

Rnzn and M(z) = 1 + ∑
n≥1

Mnzn (2.5)

are related by the equation
M(z) = R(zM(z)). (2.6)

The proof is based on the following fact: a partition in NCn has a unique decompo-
sition into one block {i1 = 1, i2, . . . , ik} containing 1, and k noncrossing partitions on
the intervals of integers [ij + 1, ij+1 − 1] for j = 1, . . . , k where ik+1 = n + 1 by conven-
tion. Applying this decomposition to the terms in the right side of (2.4), one obtains the
equality of the coefficients of zn on both sides of (2.6).

Let us now apply this statement to the counting of all morphisms in the category
NPn. Define Homn(i, j) to be the set of all morphisms inNPn going from a noncrossing
partition with i blocks to a noncrossing partition with j blocks. Recall that Qn(u) = [zn]Q
is a polynomial in u counting morphisms to the top according to the number of blocks of
the source partition. Equivalently, Qn is the coefficient of v in the following polynomial

Mn(u, v) := ∑
1≤j≤i≤n

# Homn(i, j)uivj. (2.7)
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Now the description of general morphisms in terms of morphisms to the top (cf.
Section 1.2 implies the following relations for n ≥ 1:

Mn(u, v) = ∑
π=(π1,...,πk)∈NCn

vkQπ

Therefore the relations (2.4) are satisfied with Mn(u, v) and Rn(u, v) := vQn(u). The
corresponding generating function R = R(z, u, v) is given by R = 1 + vQ, and satisfies

R = 1 + vz
(

1 +
R− 1

v

)(
u + (1 + u)

R− 1
v

)
. (2.8)

by (2.3). In this last equation, we perform the substitution z → zM. We can then use
use the R-transform (2.6) to get the following equation for M:

M = 1 + vzM
(

1 +
M− 1

v

)(
u + (1 + u)

M− 1
v

)
. (2.9)

To simplify this functional equation, notice that by (2.7) uv divides Mn. It is natural
to define H as M−1

uvz , and substituting in (2.9) gives immediately

H = (1 + uzH) (1 + uvzH) (1 + (1 + u)zH) . (2.10)

Note that the coefficient Hn of zn has the following expansion

Hn = ∑
0≤j≤i≤n−1

# Homn+1(i + 1, j + 1)uivi.

2.3 Hidden symmetry of order three

We prove the symmetry of order 3 noticed in the introduction. First, let us substitute
u 7→ 1/u, v 7→ 1/v and finally z 7→ uvz in the equation (2.10) for H. This gives us an
equation for the generating series L of the polynomials Ln(u, v):

L = (1 + zL)(1 + vzL)(1 + (1 + u)vzL). (2.11)

Let us now perform the substitution u 7→ u− 1 to obtain an equation for the generating
series ∆ of the polynomials ∆n(u, v):

∆ = (1 + z∆)(1 + vz∆)(1 + uvz∆), (2.12)

The transformations for ∆n(u, v) given in the introduction are immediately deduced
from this functional equation, which describes ternary rooted trees according to their
total number of edges, where v is accounting for left edges and uv is accounting for
right edges. This has an evident invariance under the symmetric group of order 3,
permuting the three kinds of edges (namely left, middle and right).
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2.4 Proof of Theorem 1

Let us now proceed to compute the cardinalities # Homn(i, j) by Lagrange inversion. Let
L = uzH so that [uivjzn]L = # Homn(i, j + 1). From (2.10), one gets

L
(1 + vL)(1 + L)(u + (1 + u)L)

= z. (2.13)

Setting φ(w) = (1+w)(1+ vw)(w+ u(1+w)), Lagrange inversion theorem says that

[zn]L =
1
n
[wn−1] (φ(w)n) .

This implies that

[uivjzn]L =
1
n
[wn−1]

(
(1 + w)n

(
n
j

)
wj
(

n
i

)
(1 + w)iwn−i

)
.

From there, one gets

[uivjzn]L =
1
n

(
n
i

)(
n
j

)(
n + i

i− j− 1

)
. (2.14)

This proves Theorem 1 since `i,j = # Homn(n− j, n− i) by definition.
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